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Turbulent channel flow simulations are performed using second- and fourth-order
finite difference codes. A systematic comparison of the large-eddy simulation (LES)
results for different grid resolutions, finite difference schemes, and several turbulence
closure models is performed. The use of explicit filtering to reduce numerical errors
is compared to results from the traditional LES approach. Filter functions that are
smooth in spectral space are used, as the findings of this investigation are intended
for application of LES to complex domains. Explicit filtering introduces resolved
subfilter-scale (RSFS) as well as subgrid-scale (SGS) turbulence terms. The former can
be theoretically reconstructed; the latter must be modelled. The dynamic Smagorinsky
model, the dynamic mixed model, and the new dynamic reconstruction model are
all studied. It is found that for explicit filtering, increasing the reconstruction levels
for the RSFS stress improves the mean velocity as well as the turbulence intensities.
When compared to LES without explicit filtering, the difference in the mean velocity
profiles is not large; however the turbulence intensities are improved for the explicit
filtering case.

1. Introduction
The equations for large-eddy simulation (LES) are obtained by applying a low-pass

filter to the Navier–Stokes equations. This filtering operator divides the flow into
so-called resolved and subfilter-scale (SFS) motions. When the equations are solved
on a discrete grid, a discretization operator is applied to the equations as well, which
further divides the turbulent flow field; the subfilter scales are divided into resolved
SFS and unresolved SFS regions. The unresolved SFS motions are commonly called
subgrid-scale motions (see also the notation used by Zhou, Brasseur & Juneja 2001).
Figure 1 in § 2 depicts these regions of the flow field, which are described further later.
The effect of the resolved subfilter-scale (RSFS) and subgrid-scale (SGS) motions
on the resolved velocity field must be considered. The RSFS contribution can be
theoretically reconstructed, and the SGS stress must be modelled. The filter shape as
well as the filter width and, of course, the grid resolution are free parameters in LES.
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For engineering purposes, second-order numerical methods are usually used when
performing LES for complex flow fields. In LES the smallest resolved scales are
often used to model the contribution from the unresolved scales. Therefore, it is
of great importance that these small scales be resolved to high accuracy. High-
accuracy LES results can be achieved by high-order numerical methods (see e.g.
Morinishi et al. 1998) and/or by explicit filtering (Lund & Kaltenbach 1995). The
complexity in implementing high-order methods as well as the computational cost
become prohibitive when studying flow fields in complex geometries. Therefore, the
use of explicit filtering may provide a favourable alternative.

In traditional LES solution methods, the computational grid and discretization
operators are to be considered ‘implicit’ filtering of the Navier–Stokes equations.
Using this approach, there is no need to define a filter function, but neither can
the implicit filter be determined. The only actual filter that may be applied in the
simulations is used in models for the RSFS and/or SGS contributions. One example
is the need for a test filter in the dynamic Smagorinsky SGS model to determine the
model coefficient.

In contrast, when explicit filtering is applied in LES, an explicitly defined filter
function is needed. In this approach, the defined filter is used when calculating the
RSFS contribution. If the dynamic Smagorinsky model (DSM) is used as the SGS
model, an additional filter function (with larger width than the explicit filter) must
also be defined for the test filter in the dynamic procedure. Both the RSFS and
the SGS contributions must be included in the simulations. The differences in the
implementation of the traditional LES and the explicitly filtered LES approaches
might be considered subtle; however, the effect on the LES results is considerable.

The explicit filtering approach has recently been proposed as a method to minimize
the influence of discretization error in finite difference codes (Lund & Kaltenbach
1995). All finite difference approximations have a truncation error that grows with
increasing wavenumber. This truncation error can be reduced or eliminated when
explicit filtering with a filter width larger than the computational grid cell size
is applied (Lund 1997). Several researchers have investigated explicit filtering in
turbulent channel flow. Lund & Kaltenbach (1995) used sharp cutoff filters (in spectral
space) in the homogeneous directions with a second-order finite difference code (the
same code used in this work). They concluded that the explicit filtering improved
the accuracy of the LES results; however, mesh refinement without explicit filtering
improved the results at a greater rate. All of their simulations used the DSM with
a cutoff filter, which is not applicable to general geometries. Carati, Winckelmans &
Jeanmart (2001) developed a useful framework for the explicit filtering approach.
They proposed governing equations for LES which carefully distinguish between
the discretization and filtering procedures. These equations are also used here to
separate the RSFS and SGS effects used in explicit filtering. Winckelmans et al. (2001)
performed simulations with explicit filtering using a fourth-order finite difference
code (also used in this work). They applied second-order commutative filters in three
dimensions, which introduce commutation errors in the wall-normal direction due
to the stretched grid (Ghosal & Moin 1995). The explicit filtering approach (with
low-order RSFS reconstruction) did not perform as well as DSM without explicit
filtering (with a sharp cutoff test filter), though the authors suggested that higher-
order reconstruction of the RSFS terms could improve the results obtained with
explicit filtering. Gullbrand (2001) performed explicit filtering (also with low-order
RSFS reconstruction) in three dimensions using commutative filters with the DSM in
the same fourth-order finite difference code. Results without explicit filtering showed
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better agreement with direct numerical simulation (DNS) data, also suggesting that
higher-order reconstruction is needed for the RSFS terms.

In this investigation, we study the influence of numerical errors on the LES results,
as well as the influence of the filtering approach and the reconstruction level on
the turbulence models. The numerical error is studied by performing simulations of
a turbulent channel flow using both second-order and fourth-order finite difference
codes. The advantage of studying the channel flow is that both sharp cutoff and
smooth filter functions can be used. In this work, the sharp cutoff filter is used only
for comparison purposes, as our aims are to investigate approaches for LES over
complex domains where sharp cutoffs cannot be used. The sharp cutoff is therefore
used only for traditional LES, without explicit filtering. A smooth filter is applied
for LES with explicit filtering. Higher-order reconstruction models for the RSFS
stress are investigated with filters applied only in the homogeneous directions, as
this avoids introducing commutation errors. The effect of three-dimensional filtering
must ultimately be considered, but is left to future work. For turbulence models,
the DSM, the dynamic mixed model (DMM), and the new dynamic reconstruction
model (DRM) are all investigated. The DSM is used as the SGS model in all the
simulations presented here. The DMM is a linear combination of the scale similarity
model (SSM) of Bardina, Ferziger & Reynolds (1983), which acts as the RSFS model,
and the DSM. In the DRM, the RSFS stress is modelled by using an estimate of
the unfiltered velocity in the unclosed term; the SGS stress is again modelled by the
DSM.

2. Governing equations
The governing equations for incompressible flow are the continuity equation

together with the Navier–Stokes equations,

∂ui

∂xi

= 0,
∂ui

∂t
+

∂uiuj

∂xj

= − ∂p

∂xi

+
1

Reτ

∂2ui

∂xj∂xj

. (2.1)

Here ui denotes the velocity, p pressure and Reτ the Reynolds number based on the
friction velocity and the channel half-width. Repeated indices indicate summation.

In computational LES, the governing equations are filtered in space and solved
numerically on a grid. The traditional procedure for LES has been to treat the grid
and the discretization operators as the filtering procedure of the governing equations.
Here, we instead follow the approach of Carati et al. (2001) and Winckelmans et al.
(2001) where the filtering and discretization procedures are treated separately. The
discretization operator is represented by a tilde and the filtering operator by an
overbar. The filter function G is applied to a flow variable f in physical space as

f (x, �, t) =

∫ ∞

−∞
G(x, x ′, �)f (x ′, t) dx ′, (2.2)

where � is the filter width. Thereby ũi denotes a variable on the grid, and ũi

denotes a filtered variable on the grid. Figure 1 shows a schematic of a typical energy
spectrum from a turbulent flow. The spectrum can be separated into three parts
(Carati et al. 2001; Zhou et al. 2001). The low-wavenumber portion is well-resolved
on the grid, and is contained in the velocity ũi . The shaded portion represents RSFS
motions; this region contains filtered information that is still resolved on the grid.
The subdomain between the dotted and solid lines is denoted the numerical error
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Figure 1. Schematic of velocity energy spectrum showing partitioning into resolved,
subfilter-scale, and subgrid-scale motions. The numerical error region is also shown. The
grid is indicated by the vertical dashed line, and the filter by the curved dashed line.

(NE) region, which is present due to the discretization errors. This region would not
exist if spectral methods were used; in this particular case, the complete RSFS stress
could be recovered. If numerical errors are present, the RSFS motions cannot be
fully reconstructed. Finally, the high-wavenumber portion contains SGS motions that
cannot be resolved on the grid, and must be modelled.

Hence, the LES momentum equations on a discrete mesh are written as
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− ∂τ̃ij

∂xj

(2.3)

where the turbulent stresses are defined as τij = uiuj − ũi ũj . The filtered equations
are not closed due to the nonlinear term uiuj . Properties of the specific filters used
are described in § 4. Note that each term in the equation contains the effects of
discretization, denoted by the tilde operator. In a spectral code, the effect of the
discretization is simply a spectral cutoff filter, where the discretization and filtering
operators clearly commute (i.e. ũ = ũ). (Note that the cutoff filter is more accurately
termed a ‘cutoff projection’, as it is not reversible. However, we use the term ‘cutoff
filter’ as is commonly done in the literature.) With finite differences, each term in
the governing equations is affected differently by the discretization. The modified
wavenumber effect (Moin 2001) will damp motions near the grid cutoff, as indicated
in the NE region of figure 1. Thus the discretization acts as a smooth filter that is
applied to the flow fields (though the exact nature of this smooth filter is unknown).
In this work, we also assume ũ = ũ when finite differences are used. When simulations
are performed using the actual LES code, numerical errors due to the space and time
discretization schemes will interact, making the effects of explicit spatial filtering and
the grid cutoff filter impossible to separate. Conceptually, however, figure 1 serves to
separate these effects so that we can address each as is appropriate.

Following Carati et al. (2001), the turbulent stresses can be separated into two
parts, τij = Bij + Aij , where

Bij = ũi ũj − ũi ũj , Aij = uiuj − ũi ũj . (2.4)

Aij , which we call the SGS stress, depends on scales beyond the resolution domain
of the LES. Bij , the RSFS stress, depends on the differences between the exact and



Numerical errors and turbulence models in LES 327

filtered velocity fields within the resolution domain. As the filter width increases, the
total turbulent stress term, consisting of the SGS and RSFS terms, will increase.
The RSFS component can be computed theoretically, as an infinite expansion in a
series model for ũi would give the exact form (Yeo & Bedford 1988; Katopodes,
Street & Ferziger 2000; Stolz, Adams & Kleiser 2001). Further discussion concerning
partitioning of the RSFS and the SGS stresses can be found in Carati et al. (2001)
and Winckelmans et al. (2001).

3. Resolved subfilter-scale and subgrid-scale models
When an explicit filter is applied to the Navier–Stokes equations, as in (2.3) above,

information at the high wavenumbers is damped. In theory, this RSFS information
can be restored exactly by using an inverse filtering operation. Several methods have
been proposed to approximate this inverse filtering operation. Stolz et al. (2001) use
the van Cittert (1931) iterative method in their approximate deconvolution procedure
to reconstruct the unfiltered velocity field ũi from the filtered field ũi . Chow &
Street (2002) use Taylor series expansions to obtain the unfiltered velocity. These
unfiltered fields, ũi , are then substituted into the expression for Bij to obtain the
RSFS reconstruction. The SSM (Bardina et al. 1983) and the tensor-diffusivity model
(Leonard 1974) can be derived from either of these reconstruction procedures by
truncating the series expansions after a specified number of terms (Katopodes et al.
2000; Winckelmans et al. 2001). By truncating these series, a model is obtained for
the RSFS term Bij . However an additional stress term (Aij ) is still required to model
the SGS stresses. Note that if the problem domain can be transformed into spectral
space, the filter (if it is smooth) can be exactly inverted, and an exact reconstruction
can be obtained. Explicit filtering is thus of no advantage for reducing numerical
errors when smooth filters are used in spectral methods (Winckelmans & Jeanmart
2001). If higher-order finite difference schemes are used, explicit filtering to reduce
numerical errors may also become less important.

In this study, both low-order (the SSM) and higher-order reconstructions (obtained
with the van Cittert iterative method) are used to model the RSFS stresses. In order
to make a fair comparison between the RSFS models, the same SGS model (DSM)
is used in all the simulations. The combinations of RSFS and SGS models used are
described below. Tests without explicit filtering are also performed for comparison
purposes.

3.1. Dynamic Smagorinsky model (DSM)

The DSM is a widely used eddy-viscosity SGS model (Smagorinsky 1963):

τij = −2ν̃eS̃ij = −2(C�̃)2|S̃|S̃ij , (3.1)

where νe is the eddy viscosity, �̃ the effective grid cell spacing and Sij the strain rate

tensor. The exact definition of �̃ is not needed as the total model parameter C�̃ is
calculated dynamically (Germano et al. 1991) using the least-squares approximation
of Lilly (1992). The choice of the explicit filter and the test filter for the dynamic
procedure greatly affects the performance of the DSM, as discussed further below.
The DSM is used in our simulations with and without explicit filtering.

3.2. Dynamic mixed model (DMM)

Low-order reconstruction of the RSFS stresses can be obtained by using the scale-
similarity model proposed by Bardina et al. (1983). The SSM can be derived by



328 J. Gullbrand and F. K. Chow

substituting ũi ≈ ũi into the definition of the RSFS stress tensor, Bij . Here the RSFS
stress is modelled by the scale-similarity term and the DSM is used as the SGS model,
in a procedure similar to that of Vreman, Geurts & Kuerten (1994):

τij = ũi ũj − ũi ũj − 2(C�̃)2|S̃|S̃ij , (3.2)

where the contribution of the SSM is taken into account in the calculation of the
dynamic coefficient. In addition, the test and explicit filters must be carefully applied
in the dynamic procedure, leading to a different form of the test-filtered equations, as
described by Winckelmans et al. (2001). The SSM term is discretized with the same
method as the convective term in each code.

3.3. Dynamic reconstruction model (DRM)

Higher-order reconstruction of the RSFS stress tensor can be achieved by the iterative
deconvolution method of van Cittert (1931). The unfiltered quantities can be derived
by a series of successive filtering operations (G) applied to the filtered quantities with

ũi = ũi + (I − G) ∗ ũi + (I − G) ∗ ((I − G) ∗ ũi) + · · · (3.3)

where I is the identity matrix. The truncation order of the expansion determines
the level of deconvolution, as discussed by Stolz et al. (2001). Level-n reconstruction
includes the first n + 1 terms of the series.

The series expansion provides an estimate for the inversion of the filter G. If G is
positive in Fourier space for all wavenumbers, the exact inverse can be obtained by
simply inverting the filter kernel in wave space. If G crosses from positive to negative
values in wave space at any wavenumber, exact inversion becomes impossible due to
division by zero. Therefore, the series reconstruction over all wavenumbers of such a
filtered field is approximate. The exact reconstruction can only be obtained as long as
the filter kernel is positive in wave space. Hence, it is preferable to choose an explicit
filter function that is positive for at least all the wavenumbers that are represented in
the simulation (see figure 2 in § 4 below for the filters used in this work).

The approximate unfiltered velocity, ũ�
i (due to the truncated series), is substituted

into the first term (ũi ũj ) of the RSFS stress which becomes ũ�
i ũ

�
j . This reconstruction

was used by Stolz et al. (2001) who called the RSFS model the approximate
deconvolution model (ADM). Here the ADM is used together with the DSM:

τij = ũ�
i ũ

�
j − ũi ũj − 2(C�̃)2|S̃|S̃ij , (3.4)

which we call the dynamic reconstruction model (DRM). The ADM portion of the
DRM is discretized with the same method as the convective term. The ADM with
the DSM was also independently proposed and used as a model by Winckelmans &
Jeanmart (2001) for isotropic decaying turbulence. Reconstruction series of level five
and ten are used in this study and they are denoted DRM5 and DRM10, respectively.

4. Filter functions
In finite difference methods, the filter in the LES equations is important for limiting

numerical errors. As shown by Ghosal (1996) and Chow & Moin (2003), numerical
errors from finite difference schemes can be larger than the entire contribution from
the turbulence closure term, ∂τij /∂xj . To avoid this problem, the explicit filter width
should be at least twice as large as the cell size for a fourth-order-accurate finite
difference code. For a second-order finite difference code, these studies suggest that
the filter width should be four times the cell size. In this work, the filter width in the
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case of the second-order code is not four times the cell size, but instead is chosen to
be the same as the one used in the fourth-order code. The effect of this choice on the
results warrants further study.

The correct use of the filter is especially important in the RSFS stress models,
particularly in the dynamic procedure which is based on the scale-similarity
assumption in the Germano identity (Germano et al. 1991). To compute a quantity

such as ̂̃ui in the dynamic procedure, the test filter (‘caret’ symbol) must be explicitly
applied. To satisfy scale-similarity, it is required that the hat operator be ‘similar’ to
the overbar operator. Therefore, if the filtering operator (the overbar) is a tophat, the
combined effect of the two (caret and overbar) should also be a tophat filter. Such
an operator can be obtained by following the method of Carati et al. (2001) and
Winckelmans et al. (2001), described below.

A discrete approximation to a tophat filter of twice the cell size can be obtained by
trapezoidal rule integration. In one dimension the filter is

φi =0.25φi−1 + 0.5φi + 0.25φi+1. (4.1)

However, the effective filter width of this discrete filter is no longer twice the cell size,
but rather

√
6. If Simpson’s rule were used to derive a discrete version of the tophat

filter, the weights would instead be (1/6, 2/3, 1/6), with an effective filter width of
twice the cell size. Despite the inconsistency in the effective filter width for (4.1), this
filter was chosen because the function goes to zero (in spectral space) at the grid
cutoff and therefore eliminates the highest wavenumber that could be sustained by
the grid (see e.g. Najjar & Tafti 1996).

To construct an appropriate test filter, it is useful to write the tophat filter in
Fourier space as G(k) = sin(k�)/(k�). The combined effect of the test filter (at
twice the width) and the explicit filter (the overbar) should thus also be a tophat:

Ĝ(k) = sin(2k�)/(2k�). The required test filter (acting alone), would therefore be

Ĝ(k) = sin(2k�)/(2 sin(k�)) = cos(k�). (4.2)

If we now transform this back into physical space, we have a discrete filter which
requires only the immediate neighbouring values,

φ̂i =0.5φi−1 + 0.5φi+1. (4.3)

The combined effect of the overbar and hat filters in physical space is also a tophat,
but over a wider grid stencil, as expected:

φ̂i = 0.125φi−2 + 0.25φi−1 + 0.25φi + 0.25φi+1 + 0.125φi+2. (4.4)

The filter functions are plotted in figure 2. Note that Ĝ becomes negative over the

upper half of the resolved wavenumber region. To guarantee similarity between Ĝ

and G this test filter should in fact be accompanied by a sharp cutoff filter at half
the Nyquist frequency so that these negative values are set to zero. This sharp cutoff
filter is indicated by ũc in the dynamic procedure described by Winckelmans et al.
(2001) where c indicates the cutoff filter at the coarser resolution of the test filter. In
the implementation of the dynamic procedure used in this paper, this coarse cutoff
filter has not been explicitly applied as it is not practical for complex geometries;
simulations performed with or without the coarse cutoff filter showed no discernable
differences.

In this investigation, the same tophat explicit and test filters are used in both
the second- and fourth-order finite difference codes. The explicit and test filters are
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Figure 2. Fourier transforms of the explicit and test filters, shown in one dimension. The
explicit filter ( ) goes to zero at k = π/�x (the Nyquist wavenumber). The effective test
filter ( ) is generated by applying the test filter ( ) to the explicit filter; the resulting
filter crosses zero at k = π/2�x.

applied only in the homogeneous directions, as is commonly done in channel flow
studies. Though this choice is not entirely self-consistent, it allows a direct comparison
between the second- and fourth-order LES codes without introducing commutation
errors due to filtering in the wall-normal direction over a stretched grid (Gullbrand
2001). Note that the test filter in (4.3) is only used in the simulations with explicit
filtering, as done by Winckelmans et al. (2001). When no explicit filter is applied, the
tophat in (4.1) is used as the test filter. Also note that in the finite difference codes,
for both the explicit filtering and the traditional approaches, the filters are applied
only in calculations of the RSFS or SGS terms, and do not appear elsewhere in the
code.

5. Solution algorithm
The second- and fourth-order codes represent spatial derivatives on staggered grids

with second- and fourth-order central difference schemes, respectively. In the second-
order code, the convective terms are discretized in divergence form, while in the
fourth-order code, they are in skew-symmetric form (Morinishi et al. 1998; Vasilyev
2000). In both codes, the equations are integrated in time using the third-order
Runge–Kutta scheme described by Spalart, Moser & Rogers (1991). The diffusion
terms in the wall-normal direction are treated implicitly with the Crank–Nicolson
scheme. The splitting method of Dukowicz & Dvinsky (1992) is used to enforce
the solenoidal condition. The resulting discrete Poisson equation for the pressure is
solved in the wall-normal direction using a tri-diagonal direct matrix solver in the
second-order code and a penta-diagonal matrix solver in the fourth-order code. In
the homogeneous directions, the Poisson equation is solved using a discrete Fourier
transform in both codes. Periodic boundary conditions are applied in the streamwise
and spanwise homogeneous directions, with no-slip conditions at the channel walls.
A fixed mean pressure gradient is used to drive the flow. The Reynolds number is
Reτ = 395 and the computational domain is (2πh, 2h, πh) in (x, y, z) where x is the
streamwise direction, y the wall-normal direction, and z the spanwise direction. The
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Figure 3. Mean velocity profiles for different grid sizes for the second-order code using no
turbulence model: , 48,37,36; , 64,49,48; , 81,65,64; , 96,73,72; and

, DNS.

computational grid is stretched in the y-direction by a hyperbolic tangent function

y(j ) = − tanh(γ (1 − 2j/N2))

tanh(γ )
, j = 0, . . . , N2, (5.1)

where N2 is the number of grid points in the wall-normal (j ) direction and γ is the
stretching parameter, which is set to 2.75. The computational codes are compared in
Gullbrand (2000).

6. Turbulent channel flow simulations
6.1. Effect of grid resolution and numerical error

As one focus of this work is to examine the effect of numerical errors in actual
LES, two finite difference codes (one second-order and one fourth-order) are used.
Because of the difference in accuracy between the codes, the grid resolution needs
to be chosen carefully for a better comparison of the results. Figure 3 shows the
effect of increasing grid resolution for the second-order code, using no turbulence
closure model. All results are compared to DNS data obtained using the fourth-
order finite difference code (using no turbulence model) and the same grid resolution
(256,193,192) used by Moser, Kim & Mansour (1999) for their DNS calculations.
(The DNS statistics from the fourth-order code were found to be virtually identical
to the spectral code DNS data of Moser et al. (1999).) It is clear that the choice of
resolution can significantly alter the results of the simulation. The results in figure 3
show a minimum grid resolution of (81,65,64) where the results do not seem to be
greatly affected by the numerical errors. This should be one of the necessary criteria
in order to determine the required grid resolution. Of course as the grid resolution
is increased the solution will eventually approach the DNS results. Due to increased
accuracy (compared to the second-order code), the required minimum resolution for
the fourth-order code is coarser at (64,49,48).

It is expected that for a given resolution, the performance of the fourth-order
code will be better than the second-order code, due to the higher accuracy of the
finite difference schemes. Figure 4 shows results of simulations made with the same
grid resolution (48,37,36) for both finite difference codes and for the pseudo-spectral
code of Jeanmart & Winckelmans (2002). The pseudo-spectral code uses fourth-order
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Figure 4. Mean velocity profiles for three different LES codes with the same grid resolution
(48,37,36) using no turbulence model: , second-order; , fourth-order; ,
pseudo-spectral; , DNS.

compact finite differences in the vertical direction and is spectral in the horizontal
directions. The simulations are performed without a closure model, so that the effect of
the numerical errors can be compared. As seen in figure 3, increasing resolution (and
hence decreasing numerical errors) first reduces the mass flow predicted (mean velocity
profile) in the simulations to a level lower than the DNS results. If the resolution
is further increased, the mass flow increases and approaches the DNS results from
below. Similarly, it is expected that for a given grid resolution, the pseudo-spectral
code will produce the lowest mean velocity profile of the three codes, as it has the
lowest numerical errors (see figure 4). The fourth-order finite difference code also
predicts a mean velocity profile that is lower than the DNS for this resolution (but
higher than the pseudo-spectral code); however the second-order code does not, due
to the effect of large truncation errors.

Because of the large differences in the profiles in figure 4, different grid resolutions
are chosen for each finite difference code to compare results fairly in further tests.
In this way, we attempt to minimize the numerical differences at the outset of the
investigation, though the interaction of these errors with different RSFS and SGS
models is still an issue. To choose the appropriate resolution, simulations with the
DSM using a spectral cutoff test filter with a width of twice the grid cell size were
performed at different resolutions until good agreement was obtained. (Agreement at
the two chosen resolutions can be seen in figures 5 and 6, as described later.) We use
the cutoff filter case as the base case for comparison because this approach does not
involve explicit filtering and thus provides an independent reference.

The grid resolutions for the remaining simulations are therefore as follows. The
fourth-order finite difference code resolution is chosen to be (64,49,48), which is one
quarter of the DNS resolution in each spatial direction. This resolution corresponds
to a streamwise grid cell size of �x+ =39, and a spanwise cell size of �z+ = 26. Non-
dimensional ‘plus’ units are defined as y+ = yuτ/ν, where uτ is the friction velocity
and ν is the kinematic viscosity. The range of the cell size in the wall-normal direction
is 0.4 � �y+ � 45. In the simulations using the second-order code, a grid resolution
of (81,65,64) is employed. This resolution corresponds to �x+ = 31, �z+ =19 and
0.3 � �y+ � 34. Thus the choice of grids for each code corresponds to the grid size
which was shown to not be greatly influenced by the numerical errors for the ‘no
model’ tests mentioned previously. The time step used is 1.5 × 10−3 and is the same
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Figure 5. Mean velocity profiles for the second-order (81,65,64) and fourth-order (64,49,48)
codes without explicit filtering: , fourth-order code, DSM with sharp cutoff filter; ,
second-order code, DSM with sharp cutoff filter; , fourth-order code, DSM with tophat
filter; , second-order code, DSM with tophat filter; and , DNS.

in both codes. A statistically stationary solution is obtained after 30 dimensionless
time units and thereafter statistics are sampled during 15 time units. The time is
normalized with the friction velocity and the channel half-width.

6.2. SGS modelling: LES without explicit filtering

For the purpose of comparison, tests are performed using traditional SGS model
formulations. These simulations do not use explicit filtering, meaning that the only
filter that is actually applied is the test filter in the dynamic procedure, and this
is chosen to be twice the cell size. In our test cases without explicit filtering, the
reconstruction term (the RSFS stress) is not considered; only the SGS stress is
modelled. By using the tophat filter (which is smooth in spectral space) as the test
filter in the dynamic procedure (see below), it is assumed that the implicit filter is
also a tophat; therefore the RSFS stress should in theory be considered. However, the
implicit filter cannot be determined, meaning that reconstruction of the RSFS stress
is questionable.

For the channel flow, the lateral periodic boundary conditions allow the use of a
spectral cutoff filter for the test filter. It is well known (Piomelli, Moin & Ferziger
1988) that the Smagorinsky model performs best when used together with such a
cutoff filter. The difficulty with this filter choice is that it cannot be easily applied
to other geometries. The cutoff filter width in our simulations is twice the cell size,
giving the filter–grid ratio α = �/�g = 2, where � and �g are the filter width and
grid cell size respectively. Because filtering is only applied in the x- and z-directions,
the effective filter–grid ratio squared is α2

eff = 42/3. Simulations with the DSM using a
tophat filter in physical space as the test filter are also performed. The test filter is
applied as in (4.1); the filter–grid ratio in this case is α =

√
6 and hence α2

eff = 62/3 (see
Najjar & Tafti 1996; Lund 1997).

Figure 5 shows mean velocity profiles from both the second- and fourth-order
finite difference codes, compared with DNS data. Agreement between the second-
and fourth-order codes for the simulations using the cutoff filter is quite good,
indicating that the chosen resolution for each code is good for comparisons. The
agreement between the second- and fourth-order codes for the reduced (deviatoric)
turbulence intensities for the cutoff filter case is excellent, as seen in figure 6. The
turbulence intensities are adjusted by removing the trace from each tensor component,
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Figure 6. Profiles of reduced turbulence intensities in streamwise u′u′, wall normal v′v′ and
spanwise w′w′ directions for the second-order (81,65,64) and fourth-order (64,49,48) codes
without explicit filtering. The trace is removed from each tensor component. , fourth-order
code, DSM with sharp cutoff filter; , second-order code, DSM with sharp cutoff filter;

, fourth-order code, DSM with tophat filter; , second-order code, DSM with tophat
filter; and , DNS.

as discussed by Winckelmans, Jeanmart & Carati (2002). Results for the tophat filter
are, as expected, worse than for the spectral cutoff filter. This is due to the absence of
the RSFS component of the total stress, which should be present when a smooth filter
is applied, as discussed further below. Though it is known to perform poorly with
a smooth filter, the DSM is frequently used with the tophat filter because spectral
cutoff filters cannot be applied in domains with general geometries. Note that the
profiles obtained by the second-order code in figures 5 and 6 are slightly closer than
the fourth-order code to the DNS for the tophat filter cases, which is due to the
choice of higher resolution for this code than the fourth-order code. Tests performed
using the same resolution (64,49,48) for both codes showed that the results from
the fourth-order code are closer to the DNS data than are the results from the
second-order code. This is expected based on the visible effect of numerical errors in
the comparisons of the codes using no turbulence model, shown in figure 4, and as
discussed previously in the choice to use different resolutions for each code.

Profiles of the SGS stress τ̃12 over half the channel width are shown in figures 7 and
8 for the fourth- and second-order codes, respectively. The contribution of the SGS
stress is smaller for the second-order code because the simulations are performed
using a higher resolution, meaning that more of the turbulent motions are resolved.
The SGS stress is larger for the tophat filter cases for both codes because the effective
filter width of the tophat is larger (

√
6 compared to 2), which therefore places more

energy into the SGS terms. The predicted SGS stresses are compared to the SGS
contribution calculated from the filtered DNS velocity data. The SGS stress tensor

(τ̃ij = ũiuj − ˜̃uiũj ) is calculated a posteriori assuming the implicit filter is a sharp cutoff
filter. The cutoff filters for filtering the DNS data are chosen separately to correspond
to the two grid resolutions used: the (64,49,48) grid used for the fourth-order LES



Numerical errors and turbulence models in LES 335

y

–1.0 –0.5 0
0

0.1

�~12

Figure 7. Profiles of the turbulent stress τ̃12 for the fourth-order (64,49,48) code without
explicit filtering: , DSM with sharp cutoff filter; , DSM with tophat filter; ,
DNS.
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Figure 8. Profiles of the turbulent stress τ̃12 for the second-order (81,65,64) code without
explicit filtering: , DSM with sharp cutoff filter; , DSM with tophat filter; ,
DNS.

calculations, and the (81,65,64) grid used for the second-order code. No filters are
applied in the vertical direction. The filtered DNS results for τ̃12 shown in figures 7
and 8 do not provide a clear indication of the performance of the LES simulations.
This poor agreement is probably due to the assumption of using a sharp cutoff filter
in the DNS calculation of τ̃12. The actual implicit filter cannot be determined, but
is probably closer to a smooth filter function since it is affected by finite difference
errors (due to the modified wavenumber effect).

6.3. RSFS and SGS modelling: LES with explicit filtering

To attempt to minimize the influence of discretization errors in finite difference
or finite volume codes, explicit filtering can be used. The difference between the
implementation of this approach and that of § 6.2 is in the filters used in the closure
models, and thus the ability to reconstruct the RSFS terms. As this approach is
geared toward finite difference methods in complex domains, the filters used must be
smooth; the spectral cutoff filter is not used here in this approach.

We performed several simulations using explicit filtering with increasing levels of
reconstruction for the RSFS stresses. For the first case, the DSM is applied using an
explicit filter of width twice the grid cell size and a test filter of four times the cell
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Figure 9. Mean velocity profiles for the fourth-order code (64,49,48) with explicit filtering
(tophat) and reconstruction: , DSM; , DMM; , DRM5; , DRM10; and

, DNS.
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Figure 10. Profiles of reduced turbulence intensities in streamwise u′u′, wall normal v′v′ and
spanwise w′w′ directions for the fourth-order (64,49,48) code with explicit filtering (tophat)
and reconstruction. The trace is removed from each tensor component. , DSM; ,
DMM; , DRM5; , DRM10; and , DNS.

size. The effective filter ratio for the dynamic procedure is chosen to be 2, as done
by Winckelmans et al. (2001); the determination of the optimal ratio is left to further
investigations. This first case has no reconstruction terms. Then, reconstruction to
the first level is added by using the DMM, followed by the DRM5 and DRM10
with five and ten levels of reconstruction, respectively (see § § 3.2 and 3.3). Figure 9
shows that the mean velocity profiles for the fourth-order code improve compared
to the DNS results as the level of reconstruction increases. The improvement is very
clear in the comparison of the reduced turbulence intensities in figure 10. However,
the incremental improvement between DRM5 and DRM10 is not large, indicating
that good reconstruction of the unfiltered velocity is most likely already obtained
by DRM5. The differences between the LES results (with DRM5 and DRM10) and
the DNS results are therefore most probably due to numerical errors (see the NE



Numerical errors and turbulence models in LES 337

y

–1.0 –0.5 0
0

0.2
�~12

0.4

Figure 11. Profiles of the turbulent stress τ̃12 for the fourth-order (64,49,48) code with explicit
filtering (tophat) and reconstruction: , DSM; , DMM; , DRM5; ,
DRM10; and , DNS.
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Figure 12. Mean velocity profiles for the second-order code (81,65,64) with explicit filtering
(tophat) and reconstruction: , DSM; , DMM; , DRM5; , DRM10; and

, DNS.

region in figure 1) and the SGS model used. The total turbulent stress τ̃12 shown
in figure 11 increases considerably with increasing reconstruction level (though only
slightly between DRM5 and DRM10). For each case, the contribution of the DSM
portion (not shown) of the model is roughly the same, with a peak of around 0.1,
so the increase of the modelled stresses is almost entirely due to the RSFS model.
The turbulent stresses are compared to DNS values calculated by using the definition

of the turbulent stress tensor (τ̃ij = ũiuj − ˜̃uiũj ). The DNS fields are obtained using
the fourth-order code as described previously in § 6.2. The discrete quantities ũi are
obtained from the DNS fields a posteriori by using a sharp cutoff filter chosen to
match the grid resolution used by the second- (81,65,64) and fourth-order (64,49,48)
LES simulations. The explicit filter is then twice the corresponding LES cell spacing;
for each grid size a tophat filter is constructed using the trapezoidal rule for the
DNS fields to match the filter width used in each LES simulation. No filters are
applied in the vertical direction. The turbulent stresses predicted by the DRM show
very good agreement with the stresses calculated from the DNS data. Results for
the second-order code are shown in figures 12 and 13. Turbulence intensities are not
shown for the second-order code as the pattern of improvement is similar to that of
the fourth-order code.
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Figure 13. Profiles of the turbulent stress τ̃12 for the second-order (81,65,64) code with
explicit filtering (tophat) and reconstruction: , DSM; , DMM; , DRM5;

, DRM10; and , DNS.
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Figure 14. Mean velocity profiles for the second-order (81,65,64) and fourth-order (64,49,48)
codes with and without explicit filtering (using tophat filters for both): , fourth-order
code, DRM10; , second-order code, DRM10; , fourth-order code, DSM no explicit
filtering; , second-order code, DSM no explicit filtering; and , DNS.

7. Discussion and conclusions
Despite the existing theory and previous attempts at LES using explicit filtering

(Carati et al. 2001; Winckelmans et al. 2001; Lund & Kaltenbach 1995), the
advantages of this method in practice remain unclear. Because of the extra
filtering operations, the explicit filtering approach is necessarily more computationally
expensive than traditional LES. However, explicit filtering offers the potential to limit
the influence of numerical errors from finite difference schemes on the flow solution.

Figure 14 compares results from both the second- and fourth-order codes, with
and without explicit filtering. The models used are the DSM with the tophat filter
(without explicit filtering, as is common in engineering applications) and the DRM10
(with explicit filtering). For both codes, there are only slight differences in the mean
flow profiles for the cases with and without explicit filtering. The largest difference is
seen in the reduced turbulence intensities, shown in figure 15, where the improvements
due to DRM10 are quite significant. Even the magnitudes of the reduced streamwise
intensities u′u′ for DRM10 are smaller than the DNS values, which is the opposite
of what is usually observed with turbulence closures such as the DSM (Gullbrand
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Figure 15. Profiles of reduced turbulence intensities in streamwise u′u′, wall normal v′v′ and
spanwise w′w′ directions for the second-order (81,65,64) and fourth-order (64,49,48) codes with
and without explicit filtering (using tophat filters for both). The trace is removed from each
tensor component. , fourth-order code, DRM10; , second-order code, DRM10;

, fourth-order code, DSM no explicit filtering; , second-order code, DSM no
explicit filtering; and , DNS.

2001). Better representation of turbulence intensities is, for example, very important in
applications where accurate prediction of turbulent mixing is required. These results
therefore demonstrate that improvements can be obtained for a given resolution and
code by using explicit filtering and reconstruction.

The implications of these results for LES for engineering applications must be
considered carefully. For engineering flows, traditional LES (without explicit filtering)
is commonly performed with the DSM using a tophat test filter. As shown in this
investigation, this method poorly predicts both mean velocity profiles and turbulence
intensities. There are several choices that must be made in determining how best to
improve the performance of LES in practical applications.

Choosing the appropriate grid resolution for a simulation is necessarily the first step,
as our results show great discrepancies among simulations with different grid sizes.
Two main concerns must be addressed when selecting the necessary grid resolution.
First, the grid should be able to resolve important physical characteristics of the flow.
Second, the grid must also be fine enough to obtain a solution that is not greatly
affected by the numerical errors.

The order of accuracy of the finite difference scheme used also greatly affects the
solution. Note, for example, that the difference between the predicted mean velocity
profiles for simulations using different turbulence models was larger for the fourth-
order than for the second-order code. The higher sensitivity of the fourth-order code
may be due to smaller numerical errors, and/or to the coarser resolution used in
these simulations (compared to the resolution of the second-order code), so that the
turbulence models play a larger role in the fourth-order case.

Finally, explicit filtering can be used as a means to reduce the influence of
numerical errors in the high wavenumbers. Increasing the grid resolution improves
the representation of the important large energy-containing scales. However, the
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truncation errors in the high-wavenumber portion remain. It is precisely these high
wavenumbers that are often used to represent SGS motions, and it is therefore
imperative that they be represented as accurately as possible.

The extra computational cost due to explicit filtering to obtain increased accuracy
may be worthwhile as LES continues to be applied to increasingly complex geometries
and to problems where fine resolutions are not practical. The improvements obtained
by use of the DRM10 (and the DRM5) model may be even more significant at
coarser resolutions. Tests with DRM10 with the second-order code at a resolution of
(48,37,36) show improvements over the DSM with the tophat filter (without explicit
filtering) even with such an under-resolved simulation (not shown). The turbulence
intensities predicted by DRM10 are much better than those by the DSM, even though
the improvement in the mean velocity profile is small.

As this investigation has shown, the explicit filtering approach has the potential
to improve simulation results. RSFS models with different levels of reconstruction
were considered. The LES results with explicit filtering improve as the level of
reconstruction is increased. No significant improvements were observed between
DRM5 and DRM10, indicating that the reconstruction is probably adequate at
level five (which is also less expensive computationally); discretization errors and
poor performance of the SGS model prevent the results from further approaching
the filtered DNS data. The ability of the SGS (or RSFS) model to account for such
numerical errors due to the discretization and finite difference schemes is of course
desirable. There is, therefore, a great need to develop SGS models that work well in
the context of explicit filtering, where the accuracy of the smallest scales is increased.
In addition, the effect of filtering in all three directions (and the resulting commutation
errors) needs to be investigated.
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